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Epidemic processes are common out-of-equilibrium phenomena of broad interdisciplinary interest. Recently,
dynamic message-passing (DMP) has been proposed as an efficient algorithm for simulating epidemic models
on networks, and in particular for estimating the probability that a given node will become infectious at a
particular time. To date, DMP has been applied exclusively to models with one-way state changes, as opposed
to models like SIS and SIRS where nodes can return to previously inhabited states. Because many real-world
epidemics can exhibit such recurrent dynamics, we propose a DMP algorithm for complex, recurrent epidemic
models on networks. Our approach takes correlations between neighboring nodes into account while preventing
causal signals from backtracking to their immediate source, and thus avoids “echo chamber effects” where a pair
of adjacent nodes each amplify the probability that the other is infectious. We demonstrate that this approach
well approximates results obtained from Monte Carlo simulation and that its accuracy is often superior to the
pair approximation (which also takes second-order correlations into account). Moreover, our approach is more
computationally efficient than the pair approximation, especially for complex epidemic models: the number of
variables in our DMP approach grows as 2mk where m is the number of edges and k is the number of states,
as opposed to mk2 for the pair approximation. We suspect that the resulting reduction in computational effort,
as well as the conceptual simplicity of DMP, will make it a useful tool in epidemic modeling, especially for
high-dimensional inference tasks.
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I. INTRODUCTION

Mathematical models of epidemic processes are intrinsi-
cally nonlinear and multiplicative. These models include the
spread of disease [1,2], transmission of social behaviors [3–6],
cascades of banking failures [7,8], forest fires [9–11], the
propagation of marginal probabilities in constraint satisfaction
problems [12,13], and the dynamics of magnetic and glassy
systems [14].

The classical approach to modeling epidemics, such as
the SIR model where each node is susceptible, infectious,
or recovered, assumes that at any given time each individual
exists in a single state or “compartment” [1,2]. To make
these models analytically tractable, it is often assumed that
the population is well mixed, so that interaction between
any two individuals is equally likely; in physical terms, we
assume the model is mean-field (also known as mass-action
mixing in the epidemiology literature). Despite this unrealistic
assumption, mean-field models capture some essential features
of epidemics, such as a threshold above which we have an
endemic phase with a nonzero fraction of infected individuals,
and below which we have outbreaks of size o(n) so that the
equilibrium fraction of infected individuals is zero.

In reality, contacts between individuals in the population
are often highly structured, with some pairs of individuals
much more likely to interact than others due to location or
demographics [6,15]. To relax the mean-field assumption,
while retaining some measure of tractability, we can assume
that individuals interact on a network whose structure cap-
tures the heterogeneity in the population [16,17]. However,
replacing the mean-field approximation with a contact network
substantially increases a model’s complexity.

One reasonable goal is to compute the one-point marginals,
e.g., for each node i the probability Ii(t) that i is infectious at
time t . In addition to being of direct interest, these marginals
help us perform tasks such as inferring the originator of an
epidemic, determining an optimal set of nodes to immunize in
order to minimize the final size of an outbreak, or calculating
the probability that an entire group of nodes will remain
uninfected after a fixed time [18–22].

We can always compute these marginals by performing
Monte Carlo experiments. However, since we need to perform
many independent trials in order to collect good statistics, this
is computationally expensive on large networks. This problem
is compounded if we need to scan through parameter space,
or if we want to explore many different initial conditions,
vaccination strategies, etc. Therefore, it would be desirable to
compute these marginals using, say, a system of differential
equations, with variables that directly model the probabilities
of various events.

The most naive way to do this, as we review below, uses
the one-point marginals themselves as variables. However, this
approach completely ignores correlations between nodes. At
the other extreme, to model the system exactly, we would need
to keep track of the entire joint distribution: but if there are n

individuals, each of which can be in one of k states, this results
in a coupled system with kn variables. This exponential scaling
quickly renders most models computationally intractable, even
on moderately sized networks.

In between these two extremes, we can approximate
the joint distribution by “moment closure,” assuming that
higher-order marginals can be written in terms of lower-
order ones. This gives a hierarchy of increasingly accurate
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(and computationally expensive) approximations, familiar in
physics as cluster expansions. At the first level of this hierarchy
we assume that the nodes are uncorrelated and approximate
two-point marginals such as [Ii(t) ∧ Ij (t)] (the probability that
i and j are both infectious at time t) as Ij (t)Ij (t). At the second
level, commonly referred to in the epidemiology literature as
the pair approximation, we close the hierarchy at the level of
pairs [Ii(t) ∧ Ij (t)] by assuming that three-point correlations
can be factored in terms of two-point correlations. For a
comprehensive review of these methods, see Refs. [17,23].

In this paper, we study an alternative method, namely
dynamic message-passing (DMP). As in belief propagation
[24,25], here variables or “messages” are defined on a
network’s directed edges: for instance, Ij→i denotes the
probability that j was infected by one of its neighbors other
than i, so that the epidemic might spread from j to i. However,
unlike belief propagation, where the posterior distributions are
updated according to Bayes’ rule, here we write differential
equations for the messages over time.

For many epidemic models, such as SI (susceptible-
infectious), SIR (susceptible-infectious-recovered) and SEIR
(susceptible-exposed-infectious-recovered), only one-way
state changes can occur. For example, in the SIR model,
once an individual has left the susceptible class and become
infectious, they cannot return to being susceptible; once they
become recovered, they are immune to future infections, and
might as well be removed. For these nonrecurrent models,
DMP is known to be an efficient algorithm to estimate Ii(t),
and it is exact on trees [26]; it can also be applied to threshold
models [27–29] and used for inference [18].

However, for many real-world diseases individuals
can return to previously inhabited states. In these recurrent
models, such as SIS (susceptible-infectious-susceptible), SIRS
(susceptible-infectious-recovered-susceptible), and SEIS
(susceptible-exposed-infectious-susceptible), individuals can
cycle through the states multiple times, often resulting in
multiple waves of infection traveling through the population.
The most obvious examples of recurrent models are seasonal
influenza, where due to the evolution of the virus individuals
are repeatedly infected during their lifetime [30], vaccination
where protective immunity wanes over time [31], and
diseases curable by treatment, which does not result in
antibody-mediated immunity, such as gonorrhea [32]. In all
three cases, individuals leave the susceptible class, only to
return at some point in the future (although for influenza, it is
worth mentioning that if the evolutionary rate of the virus is
functionally related to the number of susceptible individuals,
then the recovery rate may not be independent from the state
of one’s neighbors). Unfortunately, the DMP approach of
Ref. [26] cannot be directly extended to recurrent models,
since their equations for messages only track the first time an
individual makes the transition to a given state.

The purpose of this paper is to develop a novel DMP
algorithm for recurrent models of epidemics on networks,
which we call rDMP. We will show that rDMP gives very
good approximations for marginal probabilities on networks
and is often more accurate than the pair approximation.
Moreover, whereas the pair approximation requires keeping
track of mk2 variables, if there are m edges and k states per
node, rDMP requires just 2mk variables. For complex models

ij

k

Ij→i

FIG. 1. We define messages on the directed edges of a network
to carry causal information of the flow of contagion; e.g., Ij→i is the
probability that j is infectious because it received the infection from
a neighbor k other than i. This prevents signals from immediately
backtracking to the node they came from and thus prevents what we
term “echo chamber” infections.

where k is large—for instance, for diseases with multiple
stages of infection or immunity, or multiple-disease epidemics
where one disease makes individuals more susceptible to
another one—rDMP provides a substantial reduction in the
computational effort required. Finally, the rDMP approach is
conceptually simple, making it easy to write down the system
of differential equations for a wide variety of epidemic models.

II. MESSAGE-PASSING AND PREVENTING THE ECHO
CHAMBER EFFECT

As shown in Fig. 1, the variables of rDMP are messages
along directed edges of the network (in addition to one-point
marginals). For instance, Ij→i is the probability that j is
infectious because it was infected by one of its other neighbors
k. The intuition behind this is the following, where we consider
the SIS model as an example. If i is susceptible, the rate at
which j will infect i is proportional to the probability Ij that j

is infected. But when computing this rate, we only include the
contribution to Ij that comes from neighbors other than i. In
other words, we deliberately neglect the event that j receives
the infection from i, and immediately passes it back to i, even
if i has become susceptible in the intervening time.

This choice avoids a kind of “echo chamber” effect, where
neighboring nodes artificially amplify each others’ probability
of being infectious. For instance, consider a simple but
pathological case of the SI model where there are only two
nodes in the graph, i and j , with an edge between them as
shown in Fig. 2. If the transmission rate is λ, and if we assume
the nodes are independent (i.e., if we use first-order moment
closure), we obtain the following differential equations:

dIi

dt
= λSiIj ,

(1)
dIj

dt
= λSj Ii,

where Si(t) = 1 − Ii(t) and similarly for j .

i j ki j

FIG. 2. Two simple, yet illustrative, cases of networks, where
the darker node is initially infectious. As we discuss, in these simple
cases one can see the motivation for our approach to prevent infection
signals from backtracking.
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Now suppose that j is initially infectious with probability δ,
and that i is initially susceptible; i.e., Ij (0) = δ and Ii(0) = 0.
Since in the SI model nodes never recover, the infection will
eventually spread from j to i, but only if i was infectious in
the first place. Thus the marginals Ii(t) and Ij (t) should tend
to δ as t → ∞.

However, integrating Eq. (1) gives a different result. Once Ii

becomes positive, dIj/dt becomes positive as well, allowing
i to infect j with the infection that it received from j in the
first place. As a result, Ij (t) approaches 1 as t → ∞. Thus, the
“echo chamber” between i and j leads to the absurd result that
j eventually becomes infectious, even though with probability
1 − δ there was no initial infection in the system.

In the rDMP approach, we fix this problem by replacing Ii

and Ij with the messages they send each other,

dIi

dt
= λSiIj→i ,

dIj

dt
= λSj Ii→j ,

so that i can only infect j if i received the infection from some
node other than j . In this example, there are no other nodes,
so if Ij→i(0) = δ and Ii→j (0) = 0, then Ij (t) = δ for all t as
it should be.

Note that we do not claim that rDMP is exact in this case.
In particular, as in Eq. (1), Ii(t) tends to 1 as t → ∞. This is
because, unlike the system of Ref. [26], rDMP assumes that
each time j infects i is independent from the previous.

In this two-node example, of course, the pair approximation
is exact, since it maintains separate variables such as [Sj ∧ Ik]
for each of the joint states of the two nodes. However, the pair
approximation is subject to other forms of the “echo chamber
effect.” Consider a network with three nodes, as in Fig. 2
(right), where j is a common neighbor of i and k. The pair
approximation assumes that, conditioned on the state of j ,
the states of i and k are independent; however, in a recurrent
epidemic model, i and k could be correlated, for instance
if j infected them both and then returned to the susceptible
state. As a result, the pair approximation is vulnerable to
a distance-two echo chamber, where i and k infect each
other through j . As in the two-node case, rDMP prevents
this.

Preventing backtracking completely may seem like a strong
assumption, and in recurrent models it is a priori possible,
for instance, for a node to reinfect the neighbor it was
infected by. Despite the well-documented importance of
recurrent infections for diseases including (but certainly not
limited to) seasonal influenza [30], plasmodium malaria [33],
and urinary tract infections [34], little is known about the
source of recurrent infections. For certain sexually transmitted
diseases such as gonorrhea [32] and repeated ringworm
infections [35], there is evidence that backtracking plays a
significant role; on the other hand, it may be that recurrent
infections are caused by different strains, each of which
is acting essentially without backtracking. Thus, while our
nonbacktracking assumption is clearly invalid in some cases,
we believe it is a reasonable approach for most recurrent state
infections.

III. THE rDMP EQUATIONS FOR THE SIS, SIRS,
AND SEIS MODELS

In this section, we illustrate the rDMP approach for several
recurrent epidemic models. We start with the simplest, which
is the SIS model where each node is either infectious (I )
or susceptible (S). Infectious nodes infect their susceptible
neighbors at rate λ, and their infections wane back into the
susceptible state at rate ρ. We denote the probability that node
i is infectious or susceptible by Ii and Si , respectively. The
objective then is to efficiently and accurately compute these
probabilities as a function of time t .

We define variables or “messages” that live on the directed
edges (i,j ) of the network. The directed nature of these mes-
sages prevent infection from backtracking from an infectious
node back to its infection source; e.g., if node i infects node
j , then we prevent j from reinfecting i. In addition to tracking
the one-point marginal Ij , we define a message Ij→i from j to
i as the probability that j is in the infectious state as a result
of being infected from one of its neighbors other than i. Given
these incoming messages, the rate at which Ii evolves in time
is given by

dIi

dt
= −ρIi + λSi

∑
j∈∂i

Ij→i , (2)

where ∂i denotes the neighbors of i. Similarly, the rate at
which Ij→i evolves in time is given by

dIj→i

dt
= −ρIj→i + λSj

∑
k∈∂j\i

Ik→j , (3)

where k ∈ ∂j \ i denotes the neighbors of j excluding i.
For the SIRS model, we let ρ and γ denote the transition

rates from infectious to recovered and from recovered to
susceptible, respectively. Then the rDMP system for the SIRS
model is given by

dIj→i

dt
= −ρIj→i + λSj

∑
k∈∂j\i

Ik→j , (4)

which is coupled with the one-point marginals through

dSi

dt
= γRi − λSi

∑
j∈∂i

Ij→i ,

dIi

dt
= −ρIi + λSi

∑
j∈∂i

Ij→i , (5)

dRi

dt
= ρIi − γRi.

In the SEIS model, upon becoming exposed to an infected
neighbor, susceptible nodes first go through a latent period
called the exposed state. In this state, individuals are infected
but not yet infectious. Exposed nodes become infectious at the
rate ε, and infectious nodes again wane back to susceptible at
rate ρ. The rDMP system for the SEIS model is

dEj→i

dt
= −εEj→i + λSj

∑
k∈∂j\i

Ik→j ,

(6)
dIj→i

dt
= −ρIj→i + εEj→i ,
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which is coupled with the one-point marginals as

dSi

dt
= ρIi − λSi

∑
j∈∂i

Ij→i ,

dEi

dt
= −εEi + λSi

∑
j∈∂i

Ij→i , (7)

dIi

dt
= −ρIi + εEi.

Note that here we track messages for the exposed state, in
addition to one-point marginals, since they act as precursors
for the infectious messages. There is no need to track messages
for the susceptible state, since it does not cause state changes
in its neighbors.

Generalizing these equations to more complex epidemic
models with k different states, as opposed to three or four,
is straightforward. Even in a model where every state can
cause changes in a neighbor’s state—for instance, where
having susceptible neighbors speeds up the rate of recovery
or where exposed nodes can also infect their neighbors at a
lower rate—the total number of variables we need to track
in a network with n nodes and m edges is at most 2mk in
addition to the nk one-point marginals. In contrast, the pair
approximation requires mk2 states to keep track of the joint
distribution of every neighboring pair.

IV. EXPERIMENTS IN REAL AND
SYNTHETIC NETWORKS

In this section we report on numerical experiments for
rDMP for the SIS and SIRS models on real and synthetic
networks. As a performance metric, we use the average L1

error per node between the marginals computed from rDMP
and the true probabilities computed (up to sampling error)

using continuous-time Monte Carlo simulations. That is,

LrDMP
1 (t) = 1

n

∑
i

∣∣IMC
i (t) − I rDMP

i (t)
∣∣, (8)

We use this metric to compare the performance of rDMP with
the independent-node approximation and the pair approxima-
tion, or equivalently first- and second-order moment closure
[17,23]. As we will see, for a wide range of parameters, rDMP
is more accurate than either of these approaches, even though it
is more computationally efficient than the pair approximation.

In Fig. 3, we show results for the SIS model on Zachary’s
karate club [36]. On the left, we plot the marginal probability
that a particular node is infectious as a function of time,
estimated by rDMP and by first- and second-order moment
closure, and compared to those estimates with the true
marginals given by Monte Carlo simulation. On the right, we
show the average L1 error for the three methods. Here λ = 0.1,
ρ = 0.05, and the initial condition consists of a single infected
node (shown in red in the inset). The Monte Carlo results were
averaged over 105 runs. We see that rDMP is significantly
more accurate than the other two, except very early in the
simulation.

As a further illustration, in Fig. 4 we show the steady-state
marginal Ii for each node i (measured by running the system
until t = 50, at which point Ii(t) is nearly constant), with
the same parameters and initial condition as described in the
caption of Fig. 3. We show the true marginal of each node on
the y axis and the marginals estimated by rDMP and the pair
approximation on the x axis. If the estimated marginals were
perfectly accurate, the points would fall on the line y = x.
Both methods overestimate the marginals to some extent, but
rDMP is more accurate than the pair approximation on every
node. Thus, rDMP makes accurate estimates of the marginals
on individual nodes, as opposed to just the average across the
population.

FIG. 3. (Color online) Results on the SIS model. On the left, the marginal probability that node 29 in Zachary’s karate club (see inset
on right) is infectious as a function of time. We compare the true marginal derived by 105 independent Monte Carlo simulations with that
estimated by rDMP, the independent node approximation, and the pair approximation. In the inset, we show the fraction f of infectious nodes
as a function of time. On the right is the L1 error, averaged over all nodes; we see that rDMP is the most accurate of the three methods. Here
the transmission rate is λ = 0.1, the waning rate is ρ = 0.05, and vertex 0 (colored red) was initially infected.
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FIG. 4. (Color online) A scatter plot of the steady-state marginals
Ii for the n = 33 nodes in Zachary’s karate club, with the same
parameters as described in the caption of Fig. 3. The vertical axis is the
true marginal computed by Monte Carlo simulations; the horizontal
axis is the estimated marginals from rDMP (black �) and the pair
approximation (blue ×). Both methods overestimate the marginal,
but rDMP is closer to the true value (the line y = x) for every node.

To investigate how rDMP compares with the pair approxi-
mation across a broader range of parameters, in Fig. 5 we vary
the ratio between waning rate ρ and the transmission rate λ.
Since we can always rescale time by multiplying λ and ρ by
the same constant, we do this by holding λ = 0.1 as before
and varying ρ. We then measure the difference in the L1 error
of the two methods, LrDMP

1 − L
pair
1 .

In the blue region, rDMP is more accurate than the pair
approximation; in the red region, it is less so. We see that
rDMP is more accurate except at early times (as in Fig. 3) or
when ρ is small compared to λ, i.e., if the model is close to the
SI model where infectious nodes rarely become susceptible
again. The intuition for these findings, as discussed in Sec. II,

ρ
λ

FIG. 5. (Color online) The difference between LrDMP
1 and L

pair
1 on

Zachary’s karate club for various values of the ratio ρ/λ. We rescale
time so that λ = 0.1 as before. In the blue region, LrDMP

1 < L
pair
1 and

rDMP is more accurate; in the red region, LrDMP
1 > L

pair
1 . We see that

rDMP is more accurate except at early times or when ρ/λ is small.

is that rDMP assumes that repeated infection events along the
same directed edge are independent, and as a result rDMP
under performs pair approximation at early times and when
the model is close to SI.

In Fig. 6, we simulate the SIS model on an Erdős-Rényi
graph (left figure) with n = 100 and average degree 3, with
λ = 0.4, ρ = 0.1, and a single initially infectious node. As
with the karate club, rDMP does a better job of tracking the
true fraction of infectious nodes, except at early times when
the pair approximation is superior; in particular, it does a better
job of computing the steady-state size of the epidemic.

In Fig. 7 we show results for the SIRS model on Zachary’s
karate club. As in Fig. 3, on the left we show the marginal
probability I29 that node 29 is infectious; on the right, we show
the L1 error for Ii averaged over the network. In the insets,
we show the marginal probability R29 for the recovered state
and the corresponding average L1 error. Here the transmission
rate is λ = 0.1, the waning rate from infectious to recovered
is ρ = 0.05, and the rate from recovered to susceptible is γ =
0.2. The initial condition consisted of a single infected node,
and Monte Carlo results were averaged over 105 runs. As for
the SIS model, rDMP is significantly more accurate than the
independent node approximation, and is more accurate than
the pair approximation except at early times.

We found similar results on many other families of
networks, including random regular graphs, random geometric
graphs, scale-free networks, Newman-Watts-Strogatz small
world networks, and a social network of dolphins [37].
Namely, rDMP outperforms the first-order approximation
where nodes are independent, and outperforms the pair
approximation across a wide range of parameters and times.

V. LINEAR STABILITY, EPIDEMIC THRESHOLDS, AND
RELATED WORK

Systems of differential equations for rDMP, such as Eq. (3),
do not appear to have a closed analytic form due to their
nonlinearities. On the other hand, we can compute quantities
such as epidemic thresholds by linearizing around a stationary
point, such as {I ∗

j→i = 0}, where the initial outbreak is small.
Given a perturbation εj→i = Ij→i − I ∗

j→i , the linear stability
of the system, i.e., whether or not εj→i diverges in time,
is governed by the eigenvalues of the Jacobian matrix J of
the right-hand side of Eq. (3) at the stationary point I ∗

i . The
Jacobian for Eq. (3) at {I ∗

j→i} is

J(j→i),(k→j ′) = −δkj δij ′ρ + λ(1 − I ∗
j )B(j→i),(k→j ′), (9)

where

B(j→i),(k→j ′) = δjj ′ (1 − δik), (10)

and δij is 1 if i = j , and 0 otherwise. This definition of B is
another way of saying that the edge k → j influences edges
j → i for i �= k, but does not backtrack to k. This corresponds
to our assumption that infections, for instance, do not bounce
from k to j and back again and create an “echo chamber
effect.” For this reason, B is also known in the literature as the
nonbacktracking matrix [38] or the Hashimoto matrix [39].
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FIG. 6. (Color online) On the left, we show the fraction f of infectious nodes as a function of time in the SIS model on an Erdős-Rényi
graph (inset) with n = 100 and average degree 3. Here, λ = 0.4, ρ = 0.1, and the initial condition consists of a single infectious node (colored
red). Monte Carlo results were averaged over 103 independent runs. On the right is the same as the figure on the left, except we show the
results from a larger but random geometric graph with 105 nodes, where the average clustering coefficient is 0.6. Monte Carlo results here were
averaged over 100 independent runs. Except at early times, rDMP tracks the true trajectory more closely.

Now, for a small perturbation 	ε away from a stationary
point {I ∗

j→i}, the linearized system of Eq. (3) becomes

d	ε
dt

= J	ε. (11)

If J has any eigenvalues with positive real parts, then ‖	ε(t)‖
grows exponentially in time. So, the fixed point {Ij→i} is stable
as long as the leading eigenvalue J1 of J has negative real parts.

One trivial, but important, stationary point to test is I ∗
j→i =

0 for all edges. A small perturbation around 	0 corresponds
to a small initial probability that each node is infected. From

Eq. (9), J becomes

J = λ
(

B − ρ

λ
1
)
, (12)

where 1 is the 2m × 2m identity matrix. So, the leading
eigenvalue of J becomes positive when the largest eigenvalue
B1 of B is greater than ρ/λ. In other words, if

R0 = λ

ρ
B1 � 1, (13)

where R0 is the reproductive number, even a small initial
probability of infection will lead to a widespread endemic

FIG. 7. (Color online) The SIRS model on the karate club. On the left, we show the true and estimated marginal probability that a node 29
is infectious (main figure) or recovered (inset) as a function of time. On the right is the average L1 error for the infectious and recovered (inset)
states. The transmission rate is λ = 0.1, and the transition rates from infectious to recovered and from recovered to susceptible are ρ = 0.05
and γ = 0.2, respectively. Node 0 (colored red) was initially infected. Monte Carlo results were averaged over 105 runs. As for the SIS model,
rDMP is significantly more accurate than the first-order model where nodes are independent and is more accurate than the pair approximation
except at early times.
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FIG. 8. (Color online) Same as described in the caption of Fig. 3, but with transmission rate λ = 0.1 and waning rate ρ = 0.54. A
well-known upper bound on the epidemic threshold of the SIS model can be computed from the leading eigenvalue A1 of the adjacency matrix
(the Jacobian matrix of first-moment-closure approach) of a network. In other words, if ρ

λ
< A1, it is known from the first-moment-method

that an infection-free state becomes unstable and epidemics become widespread and endemic. Here we show the results from SIS model in
Zachary’s karate club, where A1 ≈ 6.7. Even though ρ

λ
= 5.4 < A1, which is well below the threshold from the first-moment method, the

contagion fades away eventually, which is correctly captured by our DMP approach.

state, where the infection becomes extensive. If Eq. (13) does
not hold, a small initial probability of infection will instead
decay back to an infection-less state.

Since B is not symmetric, not all of its eigenvalues are
real. However, by the Perron-Frobenius theorem, its leading
eigenvalue is real; moreover, it is upper bounded by A1, the
leading eigenvalue of the adjacency matrix A. Interestingly, if
we examine the linear stability of the first-order approximation
where nodes are independent [17], the epidemic threshold for
the SIS model is given by

λ

ρ
A1 � 1 . (14)

Since B1 � A1, the threshold Eq. (13) gives a better upper
bound for the true epidemic threshold than we would get
from the first-order approximation. In Fig. 8, we show the
results of SIS dynamics in Zachary’s karate club closer to
epidemic transition, where first-order approximation is highly
error-prone.

A similar threshold for the SIR model in sparse networks,
or equivalently for percolation, using B1 was recently demon-
strated in Ref. [40]. (We note that when backtracking is al-
lowed, it has important consequences for epidemic thresholds
on power-law networks [41].)

Whereas the leading eigenvector of B governs the epidemic
threshold, the spectral gap between B’s top two eigenvectors
governs how quickly the epidemic converges to the leading be-
havior (at least until we leave the linear regime). Qualitatively,
this depends on bottlenecks in the network such as those due
to community structure, where an epidemic spreads quickly in
one community but then takes a longer time to cross over into
another. Indeed, the second eigenvector of the nonbacktracking
matrix B was recently used to detect community structure [38].

Similarly, just as the leading eigenvector of B was recently
shown to be a good measure of importance or “centrality” of a
node [42], it may be helpful in identifying “superspreaders”—

nodes where an initial infection will generate the largest
outbreak—and be the most likely to lead to a widespread
epidemic.

VI. CONCLUSION

Modern epidemiological studies often require recurrent
models, where nodes can return to their previous inhabited
states multiple times. For example, consider diseases such
as influenza where individuals are infected multiple times
throughout their lives, or whooping cough where vaccine
effectiveness wanes over time; in both cases, individuals return
to the susceptible class. In this paper we have extended DMP
to recurrent epidemic models. Our rDMP approach defines
messages on the directed edges of a network in such a way
as to prevent signals, such as the spread of infection, from
backtracking immediately to the node that they came from. By
preventing these “echo chamber effects,” rDMP obtains good
estimates of the time-varying marginal probabilities on a wide
variety of networks, estimating both the fraction of infectious
individuals in the entire network, and the probabilities that
individual nodes become infected.

Like the pair approximation, rDMP takes correlations
between neighboring nodes into account. However, our ex-
periments show that rDMP is more accurate than the pair
approximation for a wide variety of network structures and pa-
rameters. Moreover, rDMP is computationally less expensive
than the pair approximation, especially for complex epidemic
models with a large number of states, using O(mk) instead of
O(mk2) variables for models with k states on networks with
m edges.

Finally, rDMP is conceptually simple, allowing the user to
immediately write down the system of differential equations
for a wide variety of epidemic models, such as those with
multiple stages of infection or immunity [43,44], or those with
multiple interacting diseases [45,46]. We expect that given its
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simplicity and accuracy, it will be an attractive option for future
epidemiological studies.

ACKNOWLEDGMENTS

This work is supported by AFOSR and DARPA under
Grant No. FA9550-12-1-0432. M.S. acknowledges support

through a graduate fellowship at the Santa Fe Institute. S.V.S.
was supported by the Santa Fe Institute and the Omidyar
Group. C.M. is supported in part by the John Templeton
Foundation. We are grateful to Mason Porter and Joel Miller
for helpful conversations regarding recurrent state epidemic
models.

[1] N. T. J. Bailey, The Mathematical Theory of Infectious Diseases
and Its Applications (Hafner Press, New York, 1975).

[2] R. M. Anderson and R. M. May, Infectious Diseases of Humans
(Oxford University Press, Oxford, 1991).

[3] M. Granovetter, Threshold models of collective behavior, Am.
J. Sociol. 83, 1420 (1978).

[4] M. Granovetter, The strength of weak ties, Am. J. Sociol. 78,
1360 (1973).

[5] J. H. Miller and S. E. Page, The standing ovation problem,
Complexity 9, 8 (2004).
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