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Out of the Syrian crisis, a data revolution takes shape

“ think Dharma is special because it has been developed by people
who have worked in these chaotic situations, and it's been road-

tested and improved in the midst of reality.” Jeremy Farrar

Director of Biomedical-Funding
Wellcome Trust
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What are good data?




What are

good data? IMPACT
ANALYTICS

Modified from Maslow’s hierarchy of needs



Technology

can support IMPACT

the whole ANALYTICS
pyramid

CONNECTIVITY & POWER




What are good data”

Requirements Benefits

I Non-machine readable Data are available Data are trapped

Adapted from The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences by Kitchin
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What are good data”

Requirements Benefits

I Non-machine readable Data are available

Il Machine-readable, but Data can be analyzed using
proprietary (e.g., Excel) proprietary software

1 Machine-readable and non- Data can be analyzed using
proprietary (e.g., CSV) most any software

IV Machine-readable, non- Data can be readily shared

proprietary, and linked to and are ready for analytics/

metadata/schemal/etc. ML/AI

Data are trapped

Data are still trapped.
Stuck with expensive
software

Data are open, but can
be challenging to
analyze/share

Requires technology

Adapted from The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences by Kitchin



Current state of data
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Good data can

Improve iImpact measurement
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We know the story of mobile phones & fishing
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But why don't the results generalize”
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Research Article

On the Importance of Price Information to Fishers
and to Economists: Revisiting Mobile Phone Use
Among Fishers in Kerala

Janaki Srinivasan

International Institute of Information Technology—Bangalore

Jenna Burrell'

University of California, Berkeley
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Meta-data were under-valued
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This is the extent to which the actual practice of mobile phone use among north Kerala’s fishers is specified in
the article. While the quantitative data that forms the substance of Jensen’s argument about the reduction of
price dispersion is collected systematically, details on exactly how fishers use phones are sparse in his account
and lack the same kind of transparency about how such insights were acquired. Some of these details are
deprioritized to footnotes. This is (broadly) a reflection of what counts as evidence in econometric analysis.
Collected prices are data, but details on processes are merely background or explanatory material.

Janaki Srinivasan

International Institute of Information Technology—Bangalore

Jenna Burrell'

University of California, Berkeley
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A similar effect was seen with mask mandates

Mask-wearing and control of SARS-CoV-2 transmissionin ) ®@

the USA: a cross-sectional study

Benjamin Rader, Laura F White, Michael R Burns, Jack Chen, Joseph Brilliant, Jon Cohen, Jeffrey Shaman, Larry Brilliant, Moritz U G Kraemer,
Jared B Hawkins, Samuel V Scarpino, Christina M Astley, John S Brownstein

~400k responses across the USA
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Mask wearing slowed COVID-19 transmission
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Rader et al. 2021 The Lancet Digital Health



But wasn't strongly influenced by mandates
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Segmented regression analysis of reported mask-
wearing showed no statistically significant change in
the slope after mandates were introduced;
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And with vaccine mandates

p N AS SOCIAL SCIENCE >

Opposition to voluntary and mandated COVID-19 vaccination as
a dynamic process: Evidence and policy implications of
changing beliefs

Katrin Schmelz?®<1'2 and Samuel Bowles®

Edited by Margaret Levi, Stanford University, Stanford, CA; received October 12, 2021; accepted January 24, 2022

Rader et al. 2021 The Lancet Digital Health



What mattered most was trust in public institutions

PNAS RESEARCH ARTICLE | SOCIAL SCIENCE ' OPEN ACCES:! o)

Check for
updates

cine attitudes may apply generally across societal groups. What differentiates them
Opposi' from others are their beliefs about vaccination effectiveness, their trust in public institu- QN Qs
tions, and whether they perceive enforced vaccination as a restriction on their freedom.
a dynal We find that changing these beliefs is both possible and necessary to increase vaccine
Changil willingness, even in the case of mandates. An inference is that well-designed policies of

persuasion and enforcement will be complementary, not alternatives.

Katrin Schmelz?®

Edited by Margaret Levi, Stanford University, Stanford, CA; received October 12, 2021; accepted January 24, 2022

Rader et al. 2021 The Lancet Digital Health



And with mobility
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https://covid19.gleamproject.org/mobility

SO how do we get to good data”
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How might this apply to pandemics prevention”

Where is Omicron now and at what variant prevalence could each country detect new variants like it?
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REGULAR ARTICLE Open Access

CrossMark

Enhancing disease surveillance with novel
data streams: challenges and opportunities

Benjamin M Althouse' ™, Samuel V Scarpino'™, Lauren Ancel Meyers'?, John W Ayers®, Marisa Bargsten?,
Joan Baumbach?, John S Brownstein>®”, Lauren Castro®, Hannah Clapham?®, Derek AT Cummings’,

Sara Del Valle®, Stephen Eubank'®, Geoffrey Fairchild®, Lyn Finelli'', Nicholas Generous®, Dylan George'?,
David R Harper'?, Laurent Hébert-Dufresne'!, Michael A Johansson', Kevin Konty'>, Marc Lipsitch'®,
Gabriel Milinovich'’, Joseph D Miller'®, Elaine O Nsoesie>®, Donald R Olson', Michael Paul',

Philip M Polgreen?, Reid Priedhorsky?, Jonathan M Read?'#?, Isabel Rodriguez-Barraquer®,

Derek J Smith#, Christian Stefansen®*, David L Swerdlow?, Deborah Thompson?,

Alessandro Vespignani®® and Amy Wesolowski'®
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Figure 1 The link between public health
problems and NDS is modified by user behavior
(i.e., propensity to search, what terms are chosen
to search, etc.), user demographics, external
forces on user behavior (i.e., changing disease
severity, changing press coverage, etc.), and
finally by public health interventions, which by
design aim to modify the public health problem
creating feedback loops on the link to NDS.

Changes in disease severity
Changes in press coverage

Public health action
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Disease
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We envision a world
where pandemics are
contained.



We Believe in a Future Where Pandemics are Contained

Because Information Empowers Action

We envision a future where...

mm) SEEN: Information is shared rapidly, equitably and
transparently across the globe

VERIFIED: A global early warning system ensures
pathogens with pandemic potential are quickly
detected and verified

mm) MITIGATED: Institutions and individuals alike are
informed and empowered to act swiftly to contain
outbreaks

...any outbreak is contained before it
becomes established



Our goal is to contain outbreaks before they become established by building a
distributed, global network
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Empowering Decision-makers: from nations to neighborhoods
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Pandemic-potential outbreaks will continue to threaten the
world and the risk of future crises is only growing

The world faces an average of 200 epidemics each year. This is a direct result of population growth, human
encroachment on animal habitats, globalization, and climate change.

Effects of
climate change

Heightened

political
reluctance and its impact on
around data InSEaEREd the natural

environment

sharing

globalization

Escalating
population growth
and deforestation

Global variance
in pandemic
recovery




Pandemic-potential outbreaks will continue to threaten the
world and the risk of future crises is only growing
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The Washington Post £ @washingtonpost - Feb 1
Researchers are asking why some countries were better prepared for covid.

One surprising answer: Trust.

washingtonpost.com

Researchers are asking why some countries were better prepared for ...
A new study of pandemic preparedness across 177 countries and
territories appears to show that trust in government plays a major role.
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Never bring data to a story fight

-Prof. Peter Dodds
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