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What are

good data? IMPACT
ANALYTICS

Modified from Maslow’s hierarchy of needs



“Change is a constant, inevitable, cyclical, and
dynamic part of the human experience”

Figure 3: Cross's worldview principles (2007) oriented in the holistic model
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Through Indigenous Eyes: Rethinking Theory and Pra.ctice
2007 SNAICC National Conference, Adelaide, Australia Terry L. Cross, MSW
https://www.snaicc.org.au/wp-content/uploads/2015/12/02242 .pdf
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Requirements Benefits

I Non-machine readable Data are available Data are trapped

Adapted from The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences by Kitchin
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What are good data”

Requirements Benefits

I Non-machine readable Data are available

Il Machine-readable, but Data can be analyzed using
proprietary (e.g., Excel) proprietary software

1 Machine-readable and non- Data can be analyzed using
proprietary (e.g., CSV) most any software

IV Machine-readable, non- Data can be readily shared

proprietary, and linked to and are ready for analytics/

metadata/schemal/etc. ML/AI

Data are trapped

Data are still trapped.
Stuck with expensive
software

Data are open, but can
be challenging to
analyze/share

Requires technology

Adapted from The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences by Kitchin



Current state of data
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Good data can

Improve iImpact measurement
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We know the story of mobile phones & fishing
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But why don't the results generalize”
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Research Article

On the Importance of Price Information to Fishers
and to Economists: Revisiting Mobile Phone Use
Among Fishers in Kerala

Janaki Srinivasan

International Institute of Information Technology—Bangalore

Jenna Burrell'

University of California, Berkeley
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Meta-data were under-valued
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This is the extent to which the actual practice of mobile phone use among north Kerala’s fishers is specified in
the article. While the quantitative data that forms the substance of Jensen’s argument about the reduction of
price dispersion is collected systematically, details on exactly how fishers use phones are sparse in his account
and lack the same kind of transparency about how such insights were acquired. Some of these details are
deprioritized to footnotes. This is (broadly) a reflection of what counts as evidence in econometric analysis.
Collected prices are data, but details on processes are merely background or explanatory material.

Janaki Srinivasan

International Institute of Information Technology—Bangalore

Jenna Burrell'

University of California, Berkeley
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A similar effect was seen with mask mandates

Mask-wearing and control of SARS-CoV-2 transmissionin ) ®@

the USA: a cross-sectional study

Benjamin Rader, Laura F White, Michael R Burns, Jack Chen, Joseph Brilliant, Jon Cohen, Jeffrey Shaman, Larry Brilliant, Moritz U G Kraemer,
Jared B Hawkins, Samuel V Scarpino, Christina M Astley, John S Brownstein

~400k responses across the USA
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Mask wearing slowed COVID-19 transmission
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Rader et al. 2021 The Lancet Digital Health



But wasn't strongly influenced by mandates
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Segmented regression analysis of reported mask-
wearing showed no statistically significant change in
the slope after mandates were introduced;
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And with vaccine mandates

p N AS SOCIAL SCIENCE >

Opposition to voluntary and mandated COVID-19 vaccination as
a dynamic process: Evidence and policy implications of
changing beliefs

Katrin Schmelz?®<1'2 and Samuel Bowles®

Edited by Margaret Levi, Stanford University, Stanford, CA; received October 12, 2021; accepted January 24, 2022

Rader et al. 2021 The Lancet Digital Health



What mattered most was trust in public institutions

PNAS RESEARCH ARTICLE | SOCIAL SCIENCE ' OPEN ACCES:! o)

Check for
updates

cine attitudes may apply generally across societal groups. What differentiates them
Opposi' from others are their beliefs about vaccination effectiveness, their trust in public institu- QRN Qs
tions, and whether they perceive enforced vaccination as a restriction on their freedom.
a dynal We find that changing these beliefs is both possible and necessary to increase vaccine
Changil willingness, even in the case of mandates. An inference is that well-designed policies of

persuasion and enforcement will be complementary, not alternatives.

Katrin Schmelz?®

Edited by Margaret Levi, Stanford University, Stanford, CA; received October 12, 2021; accepted January 24, 2022

Rader et al. 2021 The Lancet Digital Health



And with mobility
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https://covid19.gleamproject.org/mobility

SO how do we get to good data”
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Process
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owards a “network data science”

Good Data



Never bring data to a story fight

-Prof. Peter Dodds




Thank you!

G a Data
Science
» Initiative
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