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From ‘fake news’ to innovative technologies, many contagions 
spread as complex contagions via a process of social reinforce-
ment, where multiple exposures are distinct from prolonged 
exposure to a single source1. Contrarily, biological agents 
such as Ebola or measles are typically thought to spread as 
simple contagions2. Here, we demonstrate that these dif-
ferent spreading mechanisms can have indistinguishable 
population-level dynamics once multiple contagions inter-
act. In the social context, our results highlight the challenge 
of identifying and quantifying spreading mechanisms, such 
as social reinforcement3, in a world where an innumerable  
number of ideas, memes and behaviours interact. In the bio-
logical context, this parallel allows the use of complex con-
tagions to effectively quantify the non-trivial interactions of 
infectious diseases.

On 27 September 2016, the World Health Organization declared 
that measles had been eliminated from the Americas4. Less than two 
years later, an outbreak of the disease in Venezuela sparked an epi-
demic across South America, which is ongoing and has sickened 
tens-of-thousands5–7. Concurrently, the number of measles cases has 
increased in all but one of the World Health Organization regions8, 
over 80,000 cases (with a hospitalization rate > 60%) occurred in 
the European Union9, and the United States of America experienced 
17 measles outbreaks5,10. The majority of these cases occurred in 
unvaccinated individuals11–13. From collapsing public health infra-
structure14 and lack of access to vaccines7 to non-medical exemp-
tions, for example, religious beliefs15,16, and the spread of fraudulent 
science17–19, the precise reasons individuals go unvaccinated are 
myriad; however, underlying all of these mechanisms is the cou-
pled transmission of two contagions, one biological and one—or  
more—social.

Clearly, contagions never occur in a vacuum; instead, pathogens 
and ideas interact with each other and with externalities such as host 
connectivity, behaviour and mobility. Nevertheless, many biological 
contagions are still considered to be ‘simple’, where infectious indi-
viduals transmit to susceptible individuals independently of anything 
else occurring around the individuals2. The term simple contagion 
is a misnomer, since many epidemic models need to be incredibly 
complicated to account for the rich diversity of biological patho-
gens and human behaviours; including non-Markovian dynam-
ics20, heterogeneous contact structure21, vector-borne diseases22 and 
evolutionary dynamics23. Yet, in almost all cases, the probability 
of a transmission event depends only on the states of the possible 
infector and infectee. Conversely, in complex contagions, as defined 
for instance in recent multidisciplinary work1,24, the spreading  

mechanism explicitly depends on the context of transmission 
events, usually via the neighbourhood of the susceptible individu-
als, such that pairwise information becomes insufficient to model 
the transmission process25,26. For example, social reinforcement can 
lead to a transmission rate effectively proportional to the number 
of different infectious contacts to which a susceptible individual 
is exposed3. This mechanistic difference creates a false dichotomy, 
forcing us to choose the mechanism we think best describes the 
reality of a given contagion. In practice, the context of transmission 
events always matters.

When modelling a contagion, the choice of mechanism is criti-
cal because simple and complex contagions tend to induce substan-
tially different dynamics and can lead to incompatible conclusions 
about intervention strategies or risk. An important difference is that 
complex contagions do not always feature a monotonous relation 
between the expected epidemic size and their average transmission 
rate, unlike simple contagions27,28. Instead, microscopic variations 
in transmission rate can lead to macroscopic jumps in expected 
epidemic size. This effect, that small changes in transmission can 
lead to large differences in outbreak size, occurs because the popula-
tion effectively builds up a latent epidemic potential29 where many 
individuals would infect their susceptible neighbours if only a few 
of them had one more infectious neighbour. Eventually, often due 
only to small variations in initial conditions or transmission rate, a 
macroscopic cascade of infections that releases this latent epidemic 
potential will occur. The importance of correlations between the 
states of neighbours also explains why complex contagions can ben-
efit from network clustering (that is triangles), again unlike simple 
contagions30.

Several models have been developed to study interacting conta-
gions, often to investigate how the spread of awareness might slow 
an infectious disease through a duelling contagion framework31–34. 
These models are often limited to two interacting contagions since, 
as we will see, the required number of parameters and assumptions 
grows exponentially with the number of considered contagions. 
Despite their complicated structure, these studies have provided 
several useful insights. Importantly, it was shown that positively 
interacting contagions feature discontinuous phase transitions and 
can benefit from network clustering35. Consider for example the 
interaction between influenza and other respiratory pathogens—for 
example, Streptococcus pneumoniae, rhinoviruses, adenovirus and 
so on—which can interact in different ways: an individual with a 
compromised immune system due to one infection might be more 
susceptible to the other, or an individual with both infections might 
exhibit heightened symptoms and increased transmission rates36–39. 
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A population can then build up a latent epidemic potential where 
many individuals would infect their susceptible neighbours if only 
a few of them were compromised by a second disease. Therefore, it 
might not be surprising that interacting contagions can also exhibit 
macroscopic jumps in expected epidemic size under microscopic 
variation in the average transmission rates, and that interacting con-
tagions can also benefit from network clustering. Even for single 
pathogens spreading through a population, if different routes of 
transmission have drastically different transmission probabilities 
(for example, human immunodeficiency virus sexual transmis-
sion versus transmission through needle sharing40,41 or Zika sexual 
transmission from men versus women42), they will spread more like 
complex contagions.

Here, we demonstrate that the connection between complex and 
interacting contagions runs far deeper than shared phenomenology.  

In Box 1, we present simple models of interacting and complex 
contagions in well-mixed populations and demonstrate that there 
exists an exact mapping between the two models; that is, the sim-
ple model with interactions can always be expressed as a complex 
contagion. Figure 1 summarizes the interesting dynamical features 
of these models, namely their potential for discontinuous jumps 
in expected epidemic size as well as regimes of faster than expo-
nential spread. Figure 1 also highlights the mathematical mapping 
between the two dynamics. Every curve of Fig. 1 can be obtained by 
solving the differential equations for either interacting or complex 
contagions. The solutions are identical. Consequently, it follows 
that in any context where the assumption of a well-mixed popula-
tion holds, interacting contagion models are indistinguishable from 
complex contagions—provided we are unaware of potential inter-
actions among pathogens, and are not collecting the correspond-
ing co-infection data. Given that both assumptions, well-mixed 
populations and data from a single pathogen, are often considered 
to hold in contained environments such as schools, workplaces and 
homogeneous social groups43, our results demonstrate that, unless 
the process follows strictly simple dynamics, even perfect incidence 
data for a single contagion in these environments cannot be used to 
identify the true spreading mechanism.

The situation is different in a heterogeneous environment, where 
contagions follow some underlying contact network. In this con-
text, a contagion process is not fully described by simply follow-
ing the number of infections in time, and the identity and contacts 
of infected individuals matter for the dynamics. The authors of a 
recent study leveraged this idea to study memes by quantifying their 
spread within and across communities25. Their approach is based on 
the fact that for complex contagions, unlike simple contagions, “the 
spread within highly clustered communities is enhanced, while dif-
fusion across communities is hampered”. They identify a number of 
statistics that can help distinguish simple and complex contagions 
(for example, the number of early adopters of memes (number of 
contagious nodes at early times) and the state of their neighbours). 
The logic is that if contagions benefit from network clustering, 
states of neighbours should be more correlated than expected from 
the network structure alone.

Unfortunately, interacting contagions also benefit from net-
work clustering in similar ways35, which can lead us to confuse the 
two. Using simulations on a known contact network, we find that  
looking for state correlations between neighbours can indeed distin-
guish interacting and complex contagions from simple contagions 
as previously claimed25. However, we also find that this method 
cannot distinguish complex and interacting contagions from  
one another.

In our experiments, we simulate simple, interacting and complex 
contagions on both regular random contact networks with 20 ran-
dom contacts for every node and equivalent but clustered networks 
where nodes now belong to cliques of size 12 (11 contacts per node 
within cliques) and have 9 additional random contacts (see Fig. 
2). We use these regular networks to avoid confounding the effect 
of clustering with that of assortativity35 and to reduce noise in the 
observed statistics. We increase the transmission rates of both con-
tagions by a factor of 7 when they appear on the same contact—this 
interaction parameter might appear high but is actually far from, for 
example, the interaction factor between influenza and pneumococ-
cal pneumonia, which can be up to 100-fold44. The results of these 
simulations are straightforward (Fig. 2): when parametrized cor-
rectly such that all three contagion models can reach the same level 
of prevalence after some desired time period, we find that interact-
ing and complex contagions can be easily distinguished from simple 
contagions, but not from one another. This shows not only that non-
simple contagions benefit from clustering in network structure, but 
also that this clustering can lead to similar increases in statistical 
correlations between cases for different contagion mechanisms.

Box 1 | Well-mixed compartmental SiS models

We use the simple SIS process to highlight the mathematical 
mapping between complex contagions and interacting sim-
ple contagions. In the SIS process, infectious individuals infect 
susceptible individuals, but also recover back to the susceptible 
state. A general complex contagion model can be followed using 
an ordinary differential equation for the density I(t) of infectious 
individuals at time t. Omitting the obvious temporal depend-
ency, we write

β γ̇= − −I I I I I( ) (1 ) (1)

where γ is the recovery rate and β I( )  describes the transmis-
sion rate per contact given that there is a density I(t) of infectious 
individuals in the population. For example, an increasing β I( )  
can describe a social reinforcement mechanism.

We can write similar equations for two interacting simple 
contagions by tracking the density [SS] of individuals that are 
susceptible to both contagions, the densities [IS] and [SI] that are 
infected by the first or second contagion alone, and the density 
[II] that are co-infected. We are mostly interested in the density 
of nodes Ĩ = +IS II[ ] [ ] that are infected by the first contagion. We 
therefore follow
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Comparing the sum of equations (2) and (3) with equation (1) 
shows that the two models are equivalent under the mapping
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(4)1 1

which is a valid mapping from interacting contagions to a com-
plex contagion, for every monotonous form of [IS] + [II] (the 
vast majority of possible SIS curves). A similar mapping can be 
obtained for SIR dynamics using the monotonicity of the recov-
ered curve assuming that recovered individuals are now immune.
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Altogether, the results from Box 1 and Figs. 1 and 2 show that com-
plex contagions and interacting simple contagions possess the same 
dynamical and statistical features, even if the mechanisms behind 

both models are completely different. Since we know real-world 
pathogens can interact with unknown numbers of other patho-
gens—or different strains/serotypes of the same pathogen—the  
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curve), β1 is flat until Ĩ reaches the expected epidemic size Ĩ * of its second epidemic transition, at which point the synergistic interactions start. In the 
discontinuous transition regime (orange curve), β Ĩ( ) is a linear function of Ĩ. c, The varied time evolution of Ĩ t( ). In the continuous regime (blue curve), 
we see exponential growth with saturation at equilibrium. In the discontinuous regime (orange curve), we see exponential growth followed by a regime of 
rapid acceleration. In the hybrid regime (green curve), we see both behaviours in an evolution with two plateaux; mostly visible on the inset, which shows 
the longer, complete time evolution. All results were obtained both by integrating equations (2) and (3), and by using the obtained β Ĩ( ) curve as an input 
to equation (1). We found that the two approaches, interacting simple contagions or complex contagions, give exactly the same results in all regimes.
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logical conclusion is that we ought to model real contagions as com-
plex contagions. Critically, these contagions need not all be biologi-
cal and pathogens can interact with, for example, the spread of a 
behaviour. Additionally, simple contagions dynamics are a subset 
of the complex contagion model, meaning that if the pathogen 
does not interact with other contagions, the model can recapitu-
late its dynamics. More importantly, by using the complex conta-
gion model, we avoid the need to procure exponentially more data 
and estimate exponentially more model parameters as the number 
of interacting contagions increases; instead we can use a general 
parametrization to find a complex transmission function β(I) gov-
erning the effective infection rate for every pathogen of interest.

We thus develop a framework to infer a function β(I) that 
reproduces some contagion time series from a complex contagion 
Markov model of susceptible–infectious–recovered (SIR) dynam-
ics2. Essentially, this is the same well-mixed model as shown in 
Box 1 but where individuals who recover are now immune to the 
contagion instead of returning to the susceptible state. As most 
real contagion data tend to be non-monotonous (that is, they have 
a growth period, a peak and a period of decay), the SIR model is 
probably more appropriate for empirical data. In this framework, 
we inverse the differential equations to infer a β(I) function from 
data by assuming some Gaussian noise around the deterministic I(t) 
equation and using a parametrization of β(I) in terms of Bernstein 
polynomials (a detailed description is given in the Supplementary 
Information).

Our procedure focuses on β(I) instead of an instantaneous trans-
mission rate β(t) as used previously45 for two reasons. First, using 
β(I) instead of an instantaneous β(t) avoids overfitting to noise in 
the instantaneous growth rate of a time series I(t), since we combine 
the information contained in both the rise and fall of a contagion. 
Second, using β(I) maps real data to well-studied Markovian (that 
is, memory-less) complex contagions and therefore also provides an 
easy way to compare contagions independently of time and initial 
conditions. Last, we provide a formulation of the inference procedure  

for both prevalence (current infectious cases) and incidence data 
(new cases per unit time) in the Supplementary Information.

We illustrate the value of this inference procedure on simulations 
of both interacting and non-interacting simple contagions in Fig. 3.  
We selected parameter values to produce two very similar time 
series to test our framework on a hard instance of the contagion 
inference problem. While the only noise in the data is that of the 
regular stochasticity of epidemic simulations, we used a relatively 
low sampling rate and used a single realization of both interacting 
and non-interacting contagion processes. Even in this context, we 
find that the strength of the interaction is reflected in how much the 
inferred β(I) function deviates from a simple constant transmission 
rate, as measured by the ratio of the maximal to minimal values in 
the inferred β(I) function. One advantage of using the inferred β(I) 
function is that it highlights features of a contagion not readily vis-
ible in its time series alone, such as the velocity of the contagion, 
which is not restricted to exponential spread unlike classic models. 
Our results therefore showcase how a robust framework of complex 
contagion can be used to quantify interactions or simply distinguish 
and classify contagions.

To illustrate the potential of our framework for real-world con-
tagions, we can infer the presence of complex contagion dynamics 
in a wide range of contagion data. In doing so, we identified a few 
interesting cases that go against the conventional wisdom that bio-
logical pathogens spread as simple contagions while social patho-
gens spread as complex contagions through social reinforcement. 
First, we focus on social pathogens, namely memes and news, to 
find cases where loss of novelty of the pathogen, or depletion of sus-
ceptibles, decreases its transmission rate (that is, dβ/dI < 0 ∀ I) con-
trarily to most other social contagions. We show one such case in 
Fig. 4a, using the incidence of news and social media posts related 
to Walter Cronkite’s death in 2009. Nevertheless, recent work on 
collective attention dynamics on social media finds evidence that 
meme spreading is—as expected—often characterized by accelerat-
ing rates of spreading46. Our results provide a general explanation 
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for why such dynamics are expected to occur often in social conta-
gions, but can still account for ‘contagions’ where novelty causes a 
decrease in transmission rate (for example, the previous example of 
Walter Cronkite’s death).

Second, we pick a biological contagion with known interac-
tions: dengue virus. Indeed, there are well-documented interactions 
across dengue strains based on antibody-dependent enhance-
ment47,48. In this interaction mechanism, antibodies from a pri-
mary dengue infection bind to dengue virus particles of a different 
serotype, which does not neutralize virus particles and in fact helps 
them infect cells. To illustrate the utility of our inference methodol-
ogy, we focus on the 2005 dengue outbreak in Puerto Rico—as it 
features a combination of two dengue strains (DENV 2 and 3)—
and, as expected from our previous simulations, we find a signifi-
cant increase in the transmission rate from the onset of the outbreak 
to about half of its peak value. Surprisingly, the inferred transmis-
sion function is non-monotonous and then declines around peak 
incidence; potentially due to the depletion of more susceptible indi-
viduals (see Supplementary Information).

Future work should focus on leveraging our effective, complex 
contagion model to more broadly uncover known and unknown 
interactions across infectious diseases and social contagions. For 
example, with data on co-infections by dengue serotype, we could 
test the model’s ability to distinguish between multi- and single-
strain dengue virus outbreaks using only aggregate data. After dem-
onstrating the utility of our model to distinguish dengue outbreaks, 
one could attempt to quantify unknown biological interactions 
between various infectious diseases. In doing so, one must take care 
to correctly assess the impact of varied network structures45 and 
different model mechanisms including: spontaneous infections49, 
disease vectors22 or multiple exposures50. In addition, our complex 
contagion model—paired with high-resolution epidemiological 
data—can be used to search for the presence of complex, biological 
contagions (that is, single pathogen systems where the probability 
of infection is a nonlinear function of the number of exposures).

In summary, interacting simple contagions are mathemati-
cally equivalent to complex contagions if we assume well-mixed 
populations. Furthermore, even if we know the underlying con-
tact network, previously proposed statistics—such as the number 
of infectious neighbours following infection or recovery—mostly 
help to distinguish complex contagions or interacting contagions 
from simple contagions, but not necessarily from one another. 
That we are unable to distinguish interacting contagions from 
complex contagions on networks using these statistics suggests 
that their physical equivalence can be proved even in the absence 
of mass action mixing. Unfortunately, this non-identifiability also 
implies that phenomenology and model fitting cannot identify 
or quantify spreading mechanisms if we are not fully aware of all 
possible interactions and co-infections. One consequence is that 
measurements of complex spreading mechanisms, such as social 
reinforcement, might be practically impossible unless one can 
explicitly control for unknown interactions. Otherwise, observa-
tions of the spread of an individual meme or biological contagion 
in a real social system will always be confounded by the innumer-
able number of ideas, pathogens and behaviours that might be 
interacting with each other and with the contagion. Even worse, in 
practice we rarely have a perfect knowledge of the underlying con-
tact network, such that the variations in transmission rate due to 
interactions are also combined with variations due to the unknown 
contact structure.

We therefore suggest embracing complex contagions as scientifi-
cally meaningful, even in the context where one believes the under-
lying mechanisms are not complex (that is, the complex contagion 
model can be falsified with experiments). In fact, we claim that, 
even when social reinforcement and/or nonlinear infection rates 
have little mechanistic support, complex contagions remain a gen-
eral, effective framework for contagions of all natures.
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Fig. 4 | complexity of real social and epidemiological contagions. 
We fit the time series shown in the insets—the empirical incidence of 
two real complex contagions—using the SIR version of our model. a, A 
series depicting the number of mentions of Walter Cronkite's death on 
social media52. b, The overall incidence for the 2005 dengue outbreak 
in Puerto Rico53. The main plots show the posterior distribution and 
maximum a posteriori estimate for the contagion function. The maximum 
a posteriori fit is shown with a dotted line, with the 5th to 95th percentiles 
(shaded region), and 100 randomly selected posterior samples (coloured 
transparent lines) that highlight the sample-to-sample variability. Note 
that the prevalence (second insets, in blue) is not actually observed. Both 
contagions slow down as the infected density increases, one from the start 
(social contagion), and the other after a rapid initial acceleration (dengue).
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