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The e�ect of a prudent adaptive behaviour on
disease transmission
Samuel V. Scarpino1,2*, Antoine Allard3 and Laurent Hébert-Dufresne1

The spread of disease can be slowed by certain aspects of
real-world social networks, suchas clustering1,2 andcommunity
structure3, and of human behaviour, including social distanc-
ing4 and increased hygiene5, many of which have already been
studied. Here, we consider a model in which individuals with
essential societal roles—be they teachers, first responders or
health-care workers—fall ill, and are replaced with healthy
individuals.Werefer to thisprocessas relational exchange, and
incorporate it into a dynamic network model to demonstrate
that replacing individuals can accelerate disease transmission.
We find that the e�ects of this process are trivial in the
context of a standard mass-action model, but dramatic when
considering network structure, featuring accelerating spread,
discontinuous transitions and hysteresis loops. This result
highlights the inability of mass-action models to account
for many behavioural processes. Using empirical data, we
find that this mechanism parsimoniously explains observed
patterns across 17 influenza outbreaks in the USA at a national
level, 25 years of influenza data at the state level, and 19
years of dengue virus data from Puerto Rico. We anticipate
that our findings will advance the emerging field of disease
forecasting and better inform public health decision making
during outbreaks.

Consider the school teacher who is infected with influenza
by a student. At some point, they may stay home from work
due to the illness and a replacement instructor will fill their
role. For the ill teacher, this is probably a benefit, in that they
have time to recover; however, the replacement teacher is now
in a social situation where infection may be much more likely.
A similar narrative relates both to other essential members of
society and to common situations such as asking a co-worker to
attend a meeting because you have fallen ill. There is overwhelming
evidence that this behavioural process occurs consistently and
regularly during outbreaks. For example, numerous studies report
that ∼4% of teachers are absent and have to be replaced with
a substitute instructor on any given day during the influenza
season in the United States of America6–9. Furthermore, ref. 7
found that teacher absenteeism peaks on the peak week of the
influenza season and that vaccinating students can lower the rate
of teacher absenteeism by up to 10%. For nurses tracked during
the 2009 H1N1 pandemic, 24% had influenza-like-illness and
74% of these individuals stayed home from work and had to be
replaced10. Clearly such relational exchange happens; nevertheless,
it remains to be quantified how this behavioural process affects
transmission and whether evidence exists for relational exchange in
real-world outbreaks.

In its most basic form, relational exchange is defined as a node
replacement process where some individuals (for example, teachers,

custodians, health workers, and even children on a hockey team)
will be replaced by susceptible individuals if they are ever infected.
This replacement process occurs at some rate, termed γ in our
equations, to account for a potential delay betweenwhen individuals
become infectious and when they are diagnosed. Once replaced,
a new susceptible individual is given some of the connections
of the essential individual (such as students or patients). This
relational exchange is important because: the new susceptible node
is introduced into what is most probably amore dangerous situation
with respect to disease risk; and bringing susceptible nodes from
a different region of the contact network reduces the diameter of
the population.

To begin, we investigated a standard mass-action model where
nodes are distinguished by their state in a susceptible–infectious–
recovered (SIR) model. If we do not explicitly tag nodes as being
essential or non-essential, we can assume that each infectious node
is replaced by a susceptible node at an effective rate γ . This simple
model is described in the Methods, and always leads to smaller
epidemic peaks and final epidemic sizes than the equivalent model
with no relational exchange (that is, γ = 0). The logic behind this
result is straightforward, essentially the system behaves like a hybrid
between SIR and susceptible–infectious–susceptible (SIS) models,
with an effective recovery rate equal to the sum of the recovery and
relational exchange rates.

What becomes apparent is that the critical feature of relational
exchange, namely that the replacement individual is put into a
more dangerous situation than they were in before, is simply
not captured by mass-action models. Replacement individuals
are thus not equivalent to a random susceptible individual. To
properly account for this effect, we introduce network structure
into the population. In the network model, individuals in contact
with infectious nodes will see their links rewired (the relation
is exchanged) from an infectious to a susceptible node. We
test a more realistic rewiring scheme through simulations in
the Supplementary Information. In both the analytical analysis
and the simulation models, the effect of relational exchange is
simple: for every exchange the degree of the infectious node (for
example, a nurse) is reduced by one, the degree of the node
on the other end (for example, a patient) remains the same,
and the degree of the replacement susceptible node is increased
by one. Again, the events occur at a rate γ for each link with
infectious nodes, and the dynamics otherwise follow the standard
epidemiological model. To solve this model analytically, we can
use pair approximations to describe the dynamics of both the
disease and the network. To further facilitate analytic treatment,
we consider the SIS model in the main text; however, qualitatively
equivalent results apply to SIR models, see Fig. 1b and the
Supplementary Information. The pair approximation approach
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Figure 1 | Analytical solutions of the relational exchange model on a network with average degree 〈k〉=20. a, Expected final epidemic size, which, unlike
the classic model, can undergo either a continuous or discontinuous transition at the epidemic threshold. b, Time evolution at β/r=0.175 for the SIS (solid
lines) and SIR (dashed lines) models for both the classic model (green) and the acceleration caused by relational exchange (blue). The solid black line
represents exponential growth for the SIS model. c, Illustration of the hysteresis loop that can be encountered when varying the rates at which infectious
individuals are replaced.

consists of following the fraction of individuals that are susceptible
[S] or infectious [I]

˙[S]= r[I]−β[SI] (1)

˙[I]=β[SI]− r[I] (2)

where r is the recovery rate, β is the transmission rate, and γ is
the replacement rate; as well as the fraction of pairs (that is, links)

˙[SS]= (r+γ )[SI]−2β[SI]
[SS]
[S]

(3)

˙[SI]= (r+γ )(2[II]−[SI])+β[SI]
(
2
[SS]
[S]
−
[SI]
[S]
−1

)
(4)

˙[II]=β[SI]
(
1+
[SI]
[S]

)
−2(r+γ )[II] (5)

For relational exchange, we find both that the final epidemic
size and rate of spread just before the peak can be higher, see
Fig. 1. Put simply, relational exchange can parsimoniously account
for faster transmission near an outbreak’s peak than would be
predicted given early data on transmission. We should stress
that replacement does not occur only near the peak. In the
model, replacement occurs throughout the time evolution of the
disease, yet we find an interesting trade-off between its early
effect and its effect near the peak. This trade-off arises from the
state of nodes involved in the exchanged relation; for instance,
whether or not the students of the original teacher are themselves
infectious. Thus, accelerating transmission is an emergent feature
of relational exchange and is not due to a change in model rules.
As we demonstrate with a series of agent-based models in the
Supplementary Methods, accelerating transmission also occurs in
considerably more complex models, including those with complex
social structure, heterogeneity in contact between age groups, and
empirically derived social networks.

With the form used in equations (1)–(5), our model is fully
solvable. We use conservation equations for nodes, [S]+ [I]= 1,
and links, [SS] + [SI] + [II] = 〈k〉/2, where 〈k〉 is the average

degree. This leads to a simplified systemwhose solution is presented
in the Methods. We find that, unlike the standard SIS model
on a static network, whose endemic state can only emerge via
a continuous transcritical bifurcation, the endemic state in the
relational exchange model can also appear through a discontinuous
saddle-node bifurcation. As shown in the Methods, the transcritical
bifurcation occurs when(

γ

r
+1

)(
γ

r
+1−

β

r
〈k〉

)
=0 (6)

whereas the saddle-node bifurcation, whichmay imply the presence
of a hysteresis loop, occurs at
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This analysis helps us highlight a second important feature of
the model. Namely that, although the rules of the process are local,
they model a global policy: the replacement rate is a function of
how closely we are surveying the state of essential nodes and of how
quickly we wish to replace them. However, a fast replacement rate
is effective only at low prevalence, such that secondary infections
because of relational exchange are rare. Now, let us assume that the
replacement rate is high enough to keep an outbreak under control,
but that after some time the rate is slightly reduced. This might
occur, for example, after the initial fear wears off. Such amechanism
can push the system over a discontinuous transition, such that a
microscopic change in γ can lead to amacroscopic change in disease
prevalence. We then wish to bring the system back to its previous
state, so we increase γ back to its previous value. Unfortunately,
as shown in Fig. 1c, the system exhibits a hysteresis loop. The
replacement rate must be increased well beyond its previous value
for the system to return to the initial state.

We now turn our attention to empirical data. The question we
wish to answer is whether evidence exists for relational exchange
in real-world diseases. We select as our metric for relational
exchange the presence of accelerating exponential transmission
near the outbreak peak. This phenomenon is a ubiquitous feature
of relational exchange, but very uncommon in all other general
models of disease spread published to date. For this investigation,
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Figure 2 | Empirical evidence for relational exchange. a, We examined seventeen outbreaks, sixteen years and the 2009 pandemic, of national
Influenza-Like-Illness (ILI) data in the USA (grey dashed lines) by fitting exponential growth models to the first eight weeks of the influenza season, defined
by the USA Centers for Disease Control and Prevention (CDC) as weeks 40–20, and then comparing the observed number of cases to the exponential
prediction up until the peak. For these data, ILI was defined as a fever≥100 ◦F (approx. 37.778 ◦C) and one additional upper-respiratory symptom, for
example, sore throat, during the CDC-defined influenza season without another known non-influenza cause. If more cases are reported than predicted by
this exponential fit, we considered this evidence for accelerating spread and relational exchange (solid red lines). We find evidence for relational exchange
in all sixteen years and during the fall wave of the 2009 pandemic. b, Example of the fitting process for a, with training data in blue and the exponential fit in
solid black. c, Same analysis as in a, but for the dengue virus using nineteen years of data reported to the USA CDC in Puerto Rico, in which we found only a
few isolated instances of accelerating spread. d, Example of the fitting process for c, with training data in blue and the exponential fit in solid black.

we selected two pathogens: influenza and dengue. The rationale for
selecting these diseases is that they both have strong seasonality—
which can drive accelerating spread in some models11,12—and have
rich historical data sets. However, because dengue is a vectored
pathogen, which induces a separation of timescales between
transmission and behaviour, and influenza is not, we expect the
importance of relational exchange to be far greater for influenza13–15.
All models were fitted to individual seasons because both influenza
and dengue lead to sterilizing immunity during a single outbreak,
which is true even if there are multiple circulating strains of
dengue16,17. To test for the presence of relational exchange, we fit
exponential growth models to the first eight weeks of each season
and then compared the predicted number of cases to the model
prediction from week nine until the peak (see Methods).

In short, we find the predicted pattern: evidence for relational
exchange for influenza, but not for dengue. Figure 2 shows sixteen
years of national-level influenza data from the United States of
America’s Influenza-Like-Illness surveillance network. In all sixteen
years, and during the 2009 pandemic, we find strong evidence that
the exponential rate of transmission accelerates before the peak. For
dengue, with nineteen years of data, we see only a few scattered in-
stances of accelerating transmission–aside from the 1995 outbreak,
which was the most dramatic outbreak observed since 1990.

We chose to contrast influenza and dengue precisely because
both viruses are affected by seasonal forcing. The observation that
influenza shows evidence for accelerating spread, and dengue largely
does not, indicates that seasonal forcing alone cannot account for
the observed patterns. This observed difference between dengue
and influenza can parsimoniously be accounted for by relational
exchange. Furthermore, existing models of influenza, even those
with seasonal forcing, fail to capture the accelerating growth seen
in real data13,18. For example, both papers reported evidence that

absolute humidity affected the start of influenza season, more so
than accelerating the rate of spread leading up to the peak, and
consistently under-predicted the peak magnitude and predicted a
later peak than observed. The similarity to these failed predictions
and the comparison of the standard SIRmodel to the SIRmodelwith
relational exchange in our Fig. 2b is striking. To date, no alternative
model can explain this difference, without substantially increased
complexity or unrealistic assumptions. Therefore, we conclude that
evidence exists for relational exchange in real-world outbreaks.

Because the Influenza-Like-Illness surveillance network is at the
national level and the dengue data were the state level, we also fit the
relational exchangemodel to state-level influenza data. Our analysis
suggests that across 25 influenza seasons, and in all of the USA (we
were unable to obtain data from Vermont and Alaska/Hawaii were
not states during the period with historical data), greater than 70%
of each season in each state (that is,>900 seasons) support relational
exchange. The heatmap of the USA in Fig. 3 plots the proportion
of influenza seasons between 1921 and 1951, showing evidence
for relational exchange, with darker blues indicating more support
than lighter blues and yellows. The data used for this analysis were
not obtained from the Influenza-Like-Illness surveillance network,
and were instead obtained from the USA National Notifiable
Diseases Surveillance System as digitized by Project Tycho19. As a
result, we now have more reliable support derived from multiple
data sources and at multiple geopolitical scales, indicating that our
results on relational exchange are robust to sampling errors and/or
synchronization effects. We furthered evaluated the support for
relational exchange by fitting models with and without relational
exchange to the state-level influenza data and found strong support
for the presence of relational exchange in all seasons and statistical
support for the relational exchange model across more than 400
influenza outbreaks, see Supplementary Methods.
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Figure 3 | State-level empirical evidence for relational exchange.
A heatmap of the USA illustrating the proportion of influenza seasons
between 1921 and 1951 showing evidence for relational exchange, with
darker blues indicating more support than lighter blues and yellows. On
average, over 70% of seasons across all states provide support for
relational exchange. The data were obtained from the USA National
Notifiable Diseases Surveillance System as digitized by Project Tycho19.

It is worth highlighting that we restricted our analysis to
the USA Centers for Disease Control and Prevention influenza
season and that we do find evidence for exponential growth
during the first eight weeks of every influenza season, which was
our training period. However, we find an even higher rate of
exponential growth in the weeks leading up to the peak. Lastly,
and perhaps most importantly, we see evidence for accelerating
spread during the 2009 H1N1 pandemic. This pandemic occurred
in the USA outside of the typical influenza season—thus probably
altering any effect of seasonal forcing—and generated substantial
changes in health-seeking behaviour. The fact that we still see
evidence for accelerating spread during the 2009 H1N1 pandemic
suggests that the mechanism must transcend seasonality and
behaviours associatedwith health-care seeking. Relational exchange
parsimoniously accounts for both seasonal and pandemic influenza.
It is also worth noting that dengue and influenza do not have the
same functional type of seasonal forcing. However, because dengue
is also seasonally forced, this difference between the two diseases
demonstrates that accelerating spread can occur with, but is not an
expected consequence of, seasonal forcing. Accelerating spread is an
expected consequence for relational exchange. Seasonal forcing and
behaviour should thus be included and perhaps coupled for more
precise predictions.

This work is not without caveats. First, in our analytical
treatment, we assumed the population was infinitely large. While
this is a standard assumption, clearly the model cannot be directly
applied to real-world populations. Second, relational exchange
modifies the degree of nodes; however, the degree distribution will
never be broader than an exponential distribution, such that using
a heterogeneous mean-field approach would be marginally more
precise, without qualitatively changing the observed phenomena20.
Third, the compartmental approach distinguishes nodes only on
the basis of their state, such that while in the real world an
individual might return to their past connections after recovering,
our model cannot capture this behaviour, because nodes are
undistinguishable. Similarly, while random rewiring increases the
accuracy of compartmental models, it could also dampen the
effects of relational exchange in epidemics occurring over longer
timescales. Fourth, although we demonstrate that accelerating
spread still occurs in age-structured populations, see Supplementary
Methods, we did not use such a model to analyse the influenza and
dengue time series. Future work should focus on evaluating age-
structured relational exchange models with empirical data. Finally,
we considered only two diseases in our empirical investigation.

Future work should consider classifying a variety of different
diseases, on the basis of whether they exhibit evidence for
relational exchange.

There are four additional implications of this study, which
will affect the broader scientific, medical, and public health
communities. First, as recently demonstrated, the evolution of
increased pathogen transmissibility decreases as a pathogen spreads
through a heterogeneous population21. This occurs because highly
connected individuals are typically infected early in an outbreak and,
as these individuals recover, the epidemic potential of the population
decreases22. Therefore, any process, such as relational exchange,
which maintains highly connected, susceptible individuals can
increase the chance of more transmissible strains evolving and
persisting. Second, if individuals entering high-risk societal roles
can be vaccinated or selected from resistant individuals, then
relational exchange will no longer have negative effects on outbreak
progression. Third, one clear prediction from this model is that
replacement workers, for example, substitute teachers, may have
higher rates of illness. Future work should focus on empirical
studies to evaluate this prediction. Finally, methods for forecasting
disease spread must include both realistic population structure and
salient aspects of human behaviour. Without these key features, we
cannot hope for robust, actionable models for predicting epidemics.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Mass-action compartmental approach.We use a standard mass-action model
where nodes are distinguished by their state in a SIR model (variables in brackets
correspond to the fraction of the population in each state). The epidemic is
described by the following system of equations,

˙[S]=γ [I]−β[S][I] (8)

˙[I]=β[S][I]− (r+γ )[I] (9)

˙[R]= r[I] (10)

where r is the recovery rate, β is the transmission rate, and γ is the replacement
rate. All variables in brackets are dynamical, and we use the dot notation to identify
time derivatives.

Network model with pair approximations.We consider the network structure by
introducing pair approximations in the SIR ordinary differential equation system

˙[S]=−β[SI] (11)

˙[I]=β[SI]− r[I] (12)

with an implicit ˙[R]= r[I] via the conservation condition ˙[S]+ ˙[I]+ ˙[R]=0. The
pairs are followed by

˙[SS]=γ [SI]
[S]

[S]+[R]
−2β[SI]

[SS]
[S]

(13)

˙[SI]=2γ [II]
[S]

[S]+[R]
− (r+γ )[II]+β[SI]

(
2
[SS]
[S]
−
[SI]
[S]
−1
)

(14)

˙[II]=β[SI]
(
1+
[SI]
[S]

)
−2(r+γ )[II] (15)

where all missing terms go to links involving recovered nodes (which do not need
to be explicitly followed). To allow analytical treatment, we consider SIS dynamics
as per equations (1)–(5) for the remainder of the analysis.

Analytical solution of the network model. The evolution of the dynamical
variables in the model is constrained by the conservation of nodes and links,
which allows us to effectively reduce equations (1)–(5) to the following system of
three equations:

˙[I]=β[SI]− r[I] (16)

˙[SS]= (r+γ )[SI]−2β[SI]
[SS]
[S]

(17)

˙[II]=β[SI]
(
1+
[SI]
[S]

)
−2(r+γ )[II] (18)

We can readily see that a disease-free state, in which every node is susceptible,

[S]∗df=1; [SS]∗df=
〈k〉
2
; [I]∗df=[SI]

∗

df=[II]
∗

df=0 (19)

is a steady state of the network model. To see whether there exists an endemic state
in which a non-zero fraction of individuals are infectious, we set
˙[I]= ˙[SS]= ˙[II]=0 in equations (16)–(18). This yields

[SI]∗
±
=
[I]∗
±

a
(20)

[SS]∗
±
=

1+b
2a

(1−[I]∗
±
) (21)

[II]∗
±
=
[I]∗
±

2(1+b)

(
1+

[I]∗
±

a(1−[I]∗
±
)

)
(22)

where we have defined the dimensionless parameters a≡β/r and b≡γ /r .
Substituting these last equations in the link conservation equation, we obtain

1+b
2a

(1−[I]∗
±
)+
[I]∗
±

a
+
[I]∗
±

2(1+b)

(
1+

[I]∗
±

a(1−[I]∗
±
)

)
=
〈k〉
2

(23)

whose solutions,

[I]∗
±

=
−[(b+1)(a〈k〉−2b)+a]±

√
a2(b〈k〉+〈k〉−1)2−4a(b+1)(b〈k〉−1)
2(b2−a)

(24)

correspond to the possible values of the endemic state. The stability of the three
possible steady states are obtained via a standard linear stability analysis of
equations (16)–(18).

The disease-free steady state undergoes a transcritical bifurcation whenever
either [I]∗

+
=[I]∗df=0 or [I]∗

−
=[I]∗df=0, which happens when the constant term

in equation (23) equals zero.

(b+1)(b+1−a〈k〉)=0 (25)

Fixing either a or b, we find the following threshold values

atr=
b+1
〈k〉
; btr=a〈k〉−1 (26)

Similarly, we see that the endemic steady state appears through a saddle-
node bifurcation that occurs when [I]∗

+
=[I]∗

−
which, from equation (24),

happens when

a2(b〈k〉+〈k〉−1)2−4a(b+1)(b〈k〉−1)=0 (27)

Fixing either a or b, we find the following threshold values

asn=
4(b+1)(b〈k〉−1)
(b〈k〉+〈k〉−1)2

;

bsn
±
=
−(〈k〉−1)(a〈k〉−2)±2

√
(〈k〉+1)2−a〈k〉2

〈k〉(a〈k〉−4)

(28)

Notice that whenever a〈k〉=4, the threshold bsn
−
diverges, but bsn

+
equals

−1−1/〈k〉(〈k〉−1) is always negative and therefore can be discarded. From
equations (26) and (28), we see that a bistable region appears or disappears when
atr=asn or btr=bsn

±
, which respectively yield the criteria

b>
〈k〉+1
〈k〉
; a>

2〈k〉+1
〈k〉2

(29)

for the existence of a bistable region.

Empirical analysis. For exponential growth, the corresponding equation for the
number of infected individuals as a function of elapsed time is:

P(t)=P0(1+ r)t

We estimated the parameters of both models from data using a nonlinear least
squares algorithm coded in the R programming language. For both dengue and
influenza we used data from the first eight weeks of each season. We further
explored the sensitivity of our results to the size of the training data and found
them to be robust.

Data availability. Empirical data obtained from the USA National
Notifiable Diseases Surveillance System as digitized by Project Tycho19. All
other data that support the plots within this paper and other findings
of this study are available from the corresponding author upon
reasonable request.
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