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Methods: 

Simple SEIR case-count estimation of R0 

 

Two methods were used to estimate the basic reproduction number from the case counts 

of EVD in Sierra Leone.  For both methods, we used empirically estimated exponentially 

distributed durations of the latent and infectious periods from the EVD outbreak in DRC 

in 1995 [1, 2]. Case counts from the Sierra Leone Ministry of Health and Sanitation and 

from the WHO were used to separately estimate R0, using only cases through June 20, 

2014 because this was date of the last sample in the sequence data. 

 

The first method estimates the exponential rate of growth of the cumulative number of 

cases using linear regression. The growth rate is then combined with the distributions of 

the lengths of the latent and infectious periods to estimate R0 [3, 4]. We estimated 

confidence intervals for R0 as the 2.5% and 97.5% quantiles of 1000 sample values of the 

growth rate drawn from a normal distribution with mean and standard deviation as 

estimated by the linear regression. 

 

The second method uses a Poisson likelihood for the number of new cases in each 

reporting period, given the assumed distributions of the latent and infectious periods [5].  

To enforce the condition that R0 > 0, we reparameterized the likelihood in terms of log 

R0.  We then found the maximum-likelihood estimate of R0 using the reparameterized 

likelihood.  
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Pair approximation estimation of R0 

 

Rather than assuming a population is well-mixed and equally likely to contract EVD 

from an infectious individual, a pair approximation model includes contact structure of a 

population [4], which can influence the spread of disease and affect the estimation of 

𝑅![6]. A pair approximation model captures the average disease progression through a 

network by modeling the dynamics of the states of connections using differential 

equations [4]. Pair approximation models can be used to model the epidemiological 

dynamics in both regular and irregular networks [4]. The benefit of using pair 

approximations to model disease dynamics in a network is that for most cases you do not 

require knowledge about the shape of the degree distribution [4,7]. However, pair 

approximation models require the specification of a hierarchy of equations. To close the 

system of equations, one must approximate the higher moments with a closure method 

[4,7].	  

	  

We assume the network contains clustering. The amount of clustering that occurs in a 

population is measured by the clustering coefficient φ, which ranges between zero and 

one. A clustering coefficient of zero indicates no clustering in the population, whereas a 

clustering coefficient of one indicates many shared contacts between contacts. Therefore, 

the appropriate choice to close our system of equations is the triangular pair 

approximation, which accounts for the progression of a disease through a clustered 

network [4,7]. Although the triangular pair approximation was developed for dynamics 

on a regular network, one does not have to restrict the approximation to such an assumed 
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network [7]. Other closure methods, such as the ordinary pair approximation, only 

account for the average number of contacts per individual (or average degree) in the 

network [4,7]. In the presence of no clustering in the network, φ = 0, the triangular pair 

approximation becomes the ordinary pair approximation [4,7]. The addition of φ into the 

closure method allows for an adjustment to the network structure to capture the effect 

clustering has on the spread of disease through a population [7]. 

 

 

For a given individual X, the clustering coefficient is calculated using  
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and the E(eij) = p.  

We estimated the average number of contacts per individual (or average degree), k, and 

clustering coefficient, φ, from contact tracing data collected by the Liberian Ministry of 

Health and Social Welfare between August 7–August 26 of 2014.  

We used 84 sub-networks, of traced individuals, to estimate the local clustering 

coefficient of traced infected individuals. To obtain an estimate of the global clustering 

coefficient, we calculated the average of the local clustering coefficients from the contact 

tracing data. Given we only have information only about two traced individuals, and not 

the entire network, we estimate the clustering coefficient for individual X by	  
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where the index m represents a traced individual whose contacts are known. The 

maximum number of mutual contacts between individual X and individual m is k − 1. Our 

estimate represents the likelihood that m shares a contact with X.  Our estimate is 

unbiased because 
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From the contact tracing data, we estimate the average number of contacts per individual 

to be k = 5.74 (95% CI: 4.89–6.60) and the clustering coefficient to be φ = 0.21 (0.196–

0.223). The estimated household size of Liberia is 5.1 [8] and the average household size 

in Sierra Leone is 5.4 [9]. With the average household sizes being similar, we chose to 

use the average number of contacts obtained from the empirical contact tracing data.  

 

We based our equations from previous SEIR pair approximation models [4, 10,11], where 

infection in the population is driven by the number of susceptible-infected. Specifically, a 

susceptible individual (S) becomes exposed (E) after being infected by an infectious 

contact, β[SI], where [SI] denotes the number of susceptible and infected contacts. An 
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exposed individual becomes infectious after an average period of 1/σ days. Once an 

individual is symptomatic and infectious, the average time to death is 1/δ days and the 

average time to recovery is 1/ρ, where we assumed the case fatality ratio is δ / (δ + ρ). 

Once the infected individual has become deceased or recovered they enter the removed 

state. We assumed the initial number of exposed (E) individuals was randomly 

distributed throughout the population. This assumption corresponds to the following set 

of initial conditions 

[ ](0) [ ](0)
[ ](0) [ ](0)
[ ](0) 2[ ](0)
[ ](0) 0,

S N E
SE k E
SS Nk SE
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= −
=
= −
=

 

where all other states are equal to zero, where N is the population size, and where k is the 

average number of contacts per individual. The following terms denote possible pairs of 

individuals, with [SS] indicating twice the number of susceptible-susceptible connections, 

[EE] indicating twice the number of exposed-exposed connections, and the term [SE] 

indicating the number of susceptible-exposed connections in the population. The 

following set of differential equations were coded in MATLAB and solved using ode15s 

[12]:  



	   7 

 

  

d[S]
dt

= −β[SI]

d[E]
dt

= β[SI]−σ [E]

d[I]
dt

=σ [E]− δ 2 + ρ 2

δ + ρ
⎛
⎝⎜

⎞
⎠⎟

[I]

d[R]
dt

= δ 2 + ρ 2

δ + ρ
⎛
⎝⎜

⎞
⎠⎟

[I]

d[SS]
dt

= −2β (1−ϕ ) k −1
k

[SS][SI]
[S]

+ϕ N (k −1)
k 2

[SS][SI]2

[I][S]2

⎛
⎝⎜

⎞
⎠⎟

d[SE]
dt

= −β (1−ϕ ) k −1
k

[SE][SI]
[S]

+ϕ N (k −1)
k 2

[SE][EI][SI]
[S][I][E]

⎛
⎝⎜

⎞
⎠⎟

+β (1−ϕ ) k −1
k

[SS][SI]
[S]

+ϕ N (k −1)
k 2

[SS][SI]2

[I][S]2

⎛
⎝⎜

⎞
⎠⎟
−σ [SE]

d[SI]
dt

= −β [SI]+ (1−ϕ ) k −1
k

[SI]2

[S]
+ϕ N (k −1)

k 2

[SI]2[II]
[S][I]2

⎛
⎝⎜

⎞
⎠⎟
+σ [SE]− δ 2 + ρ 2

δ + ρ
⎛
⎝⎜

⎞
⎠⎟

[SI]

d[SR]
dt

= −β (1−ϕ ) k −1
k

[SR][SI]
[S]

+ϕ N (k −1)
k 2

[SR][IR][SI]
[S][I][R]

⎛
⎝⎜

⎞
⎠⎟
+ δ 2 + ρ 2

δ + ρ
⎛
⎝⎜

⎞
⎠⎟

[SI]

d[EE]
dt

= 2β (1−ϕ ) k −1
k

[SE][SI]
[S]

+ϕ N (k −1)
k 2

[SE][EI][SI]
[S][I][E]

⎛
⎝⎜

⎞
⎠⎟
− 2σ [EE]

d[EI]
dt

= β [SI]+ (1−ϕ ) k −1
k

[SI]2

[S]
+ϕ N (k −1)

k 2

[SI]2[II]
[S][I]2

⎛
⎝⎜

⎞
⎠⎟
−σ [EI]+σ [EE]− δ 2 + ρ 2

δ + ρ
⎛
⎝⎜

⎞
⎠⎟

[EI]

d[ER]
dt

= β (1−ϕ ) k −1
k

[SR][SI]
[S]

+ϕ N (k −1)
k 2

[SR][IR][SI]
[S][I][R]

⎛
⎝⎜

⎞
⎠⎟
−σ [ER]+ δ 2 + ρ 2

δ + ρ
⎛
⎝⎜

⎞
⎠⎟

[EI]

d[II]
dt

= 2σ [EI]− 2 δ 2 + ρ 2

δ + ρ
⎛
⎝⎜

⎞
⎠⎟

[II]

d[IR]
dt

=σ [ER]− δ 2 + ρ 2

δ + ρ
⎛
⎝⎜

⎞
⎠⎟

[IR]+ δ 2 + ρ 2

δ + ρ
⎛
⎝⎜

⎞
⎠⎟

[II]

d[RR]
dt

= 2 δ 2 + ρ 2

δ + ρ
⎛
⎝⎜

⎞
⎠⎟

[IR].

 

 

The first-order equations denote the absolute number of individuals in that 

epidemiological state. For example, [S] denotes the number of susceptible individuals in 
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the population and [I] denotes the number of infected individuals in the population. The 

second-order equations denote the number of pairs between different states. For example, 

[SI] denotes the number of susceptible-infected pairs in the network and [SR] denotes the 

number of susceptible-removed pairs in the network. The terms [SS], [EE], [II], and [RR] 

represent twice the number of pairs. Thus, there is a factor of two in the respective 

differential equations. The assumptions of disease transmission of the first-order 

equations also pertain to the second order equations. For example, a connection between 

a susceptible and an infected individual ([SI]) transitions to a connection between an 

exposed and an infected individual ([EI]) if the susceptible is infected. In addition, a 

connection between a susceptible individual and infected individual ([SI]) transitions to a 

connection between a susceptible individual and a removed individual ([SR]) after the 

infectious individual recovers. 

 

We parameterized our inference with the average time to from exposure to symptoms, 

1/σ, as 9 days [13], the average time from symptoms to death, 1/δ, as 8.6 days [13], a 

population size N = 6,348,350 [14], and an initial 14 exposed individuals [15]. We chose 

to use the entire population of Sierra Leone as the majority of the regions had at least one 

confirmed case of Ebola by August 31 [14]. 

 

To determine the presence of clustering, we used a likelihood approach in determining 

the model that best fits the known data. During the testing of the model we found that the 

estimated clustering coefficient was correlated with the origin time of the epidemic. 

Previous studies have indicated an origin time of approximately April 23 [16]. We 
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assumed the origin time was gamma distributed with an average origin time of April 23 

(95% CI: March 31 , May 10), based on findings from a previous study [15]. In addition 

to using a prior based on the results from previous studies [15], we separately examined 

the extent of clustering based on our phylodynamic results, which are from Sierra Leone 

only. We assumed the error in estimating the cumulative incidence was distributed 

normally for each time point. To estimate the variance of the normal distribution,  

2

2 1

( )
,

1

IN

i i
i

I

T

Nε

τ
σ =

−
=

−

∑
 

we took an iterative approach such that the estimated variance is from the model that 

maximized the likelihood function 

( ){ }2 2

2
1

exp ( ) 2
( (0)) ,

2

I
I

N
i iN

i

T
L t ε

ε

τ σ

πσ=

− −
= Γ ∏   

where t(0) is the estimated origin time, Ti is the estimated cumulative incidence at time 

point i, τi is the reported cumulative incidence at time point i, and NI  is the total number 

of cumulative incidence points. 

 

We then sampled 10,000 origin times from our gamma distribution and estimated the 

transmission rate, β, the time to recovery, 1/ρ, and clustering coefficient φ. To estimate 

these parameters, we fit the model using the confirmed cumulative incidence τ, confirmed 

cumulative mortality µ, from Sierra Leone from the WHO reports.  We fit the model 

using a MATLAB non-linear least squares fitting algorithm, lsqnonlin [17], that 

minimized the mean square error (MSE), where Ti is the estimated cumulative incidence 

at time point i, τi is the reported cumulative incidence at time point i, NI is the total 
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number of cumulative incidence points, Mi is the estimated cumulative mortality at time 

point i, µi is the reported cumulative mortality at time point i, NM is the total number of 

cumulative mortality points. We chose to include the cumulative mortality in the fitting 

process as it helps fit the estimated time to recovery. We did not include the cumulative 

mortality in the likelihood function because the cumulative incidence and cumulative 

mortality were highly correlated (R2 = 0.992). 
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We then calculated the basic reproductive number and likelihood for the estimated 

parameter values. The basic reproductive number depends on the quasi-steady state of the 

susceptible and infectious interactions during the early stages of infection [4, 6]. The 

interaction between susceptible and infected individuals is measured by the susceptible-

infected pair correlation [6] 
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 Once we obtained the parameters for the best fit, we introduced a single infectious 

individual into the population and numerically calculated 
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Using our 10,000 samples, we determined which parameter set maximized our likelihood 

function to obtain our estimate of the clustering coefficient and R0.  To obtain the 95% CI 

for the clustering coefficient and R0, we took the sets of parameters and R0 values in the 
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top 95% of the likelihood and calculated the minimum and maximum values for the 

lower and upper bounds of the confidence interval, respectively. 

	  

Parameter 	   Description	    	  
Sierra Leone 
sequences	  

Gire et al origin 
time	  

Optimal non-
clustered model *	  

φ	   Clustering 
coefficient	  

0.71	   0.36	   0	  

β	   Transmission rate 
per contact per day	  

0.61	   0.071	   0.048	  

1/ρ	   Average duration 
to recovery (days)	  

8.80	   8.77	   8.83	  

t(0)	   Estimated time of 
origin	  

May 27	   April 28	   April 17	  

R0	   Basic reproductive 
number	  

1.29	   1.40	   1.47	  

Mean Square 
Error	  

Cumulative 
incidence only	  

363	   981	   1334	  

Mean Square 
Error	  

Cumulative 
incidence and 
cumulative 
mortality	  

329	   658	   897	  

Table S2. The maximum likelihood estimated parameters based on an average of 5.74 contacts 
per individual. The model was fitted to the WHO data set of confirmed cumulative incidence and 
confirmed cumulative mortality in Sierra Leone from May 27–August 31, assuming prior 
distributions of the origin time from our phylodynamic results and from a previous study [15].  
*The optimal non-clustered model was fit to minimize the mean square error of cumulative 
incidence and mortality without any prior distribution of the origin time. 
 

Phylodynamic estimation of R0  

 

Our sequence-based parameter estimates of the recent outbreak could in principle be 

subject to the bias due to a lack of appropriate samples for rooting this outbreak in the 

EBOV species tree, as described in [15, 18, 19]. We avoided these issues by focusing 
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only on Sierra Leone samples and using a transmission-oriented evolutionary 

reconstruction appropriate for beginning epidemics [20, 21]. Thus, we sacrificed the 

ability to infer the number of epidemiological introductions in Sierra Leone, already 

estimated as two different events by Gire et al. [15] in favor of more reliable estimates of 

R0. We used different methods to estimate R0 from genome-sequence data of EBOV 

collected and dated from infected cases in Sierra Leone from late May to the middle of 

June 2014 [15]. The data set included 78 whole genomes that were trimmed to a 18,538 

bp alignment. For strains with more than one sample per patient, we kept only the oldest 

sequence available.  

 

We inferred a phylodynamic estimate using Bayesian Markov chain Monte Carlo 

(MCMC) methods implemented in BEAST 2.1 [22] with the HKY substitution model, as 

suggested by jModeltest 2.1 [23], and a proportion of invariable sites model under the 

Birth-Death Susceptible Infectious Removed (BDSIR) tree model [20]. Through a 

transmission-oriented branching process [24], the BDSIR tree model used for the 

evolutionary reconstruction accommodates stochastic processes that are characteristic of 

the first stages of an epidemic [25], such as fluctuations of population size [20], and is 

especially suited to incorporate uncertainties that come from epidemics with low values 

of R0 [20, 21]. We used a rate prior with a mean of 7 × 10–4 s/s/y (substitutions per site 

per year), a value compatible with previous independent estimates for whole genomes 

and the glycoprotein gene of Zaire ebolavirus [26, 27]. Convergence was obtained with 

four independent MCMC runs of 125 million generations and checked with effective 

sample size (ESS) values above 200 calculated with TRACER v1.6 [28].  The best-fit 
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model, according to Bayes Factor model comparison, was the relaxed, lognormal 

molecular clock [29]. Consistent with findings that the BDSIR-based phylodynamics 

estimate reliable values of R0 that are comparable to more complex stochastic-coalescent 

SIR models [21], the BDSIR relaxed exponential molecular clock, with different starting 

priors for R0 ranging from 1–10, produced consistent results (R0 = 1.4 for the lognormal 

clock and R0 = 1.38 for the exponential clock).  

 

Outbreaker estimation of R0 

The second method, implemented in the R package outbreaker, reconstructs the 

transmission tree(s) for the sampled sequences in a Bayesian framework using the 

pathogen’s serial interval distribution and a simple mutational model to construct a 

likelihood equation for a specific transmission tree [30]. We assumed that the serial 

interval distribution was equal to a Gamma distribution with mean 15.3 days and 

coefficient of variation 0.66, which was empirically estimated by the WHO Ebola 

Response Team [13].  The width of the credible intervals around the Bayesian clustering 

estimates stems from uncertainty in the inter-case, or serial, interval distribution.  We 

assumed a gamma distributed serial interval, and estimated lower R0 values when the 

distribution was closer to a Gaussian and higher values as it approached an exponential; 

however, the R0 estimates were comparatively robust to shifts in the mean of the serial 

interval distribution 
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